Leonardo Azopardo, Maxim Millan and Sarah Thomaz

Purdue Research in Mathematics Experience (PRiME)

Motivation

With given Bely ${ }^{\text {I }}$ maps and their corresponding elliptic curves, we can give a general description of their dessins d'enfants in 2 dimensions. We don't know, however, what these dessins will look like when embedded on the torus, in 3 dimensions. Our goal is to create a program that will allow us to visualize these dessins on the torus.

Background

Elliptic Curves An elliptic curve E is a set

$$
E(\mathbb{C})=\left\{\begin{array}{l|l}
(x: y: z) \in \mathbb{P}^{2}(\mathbb{C}) \left\lvert\, \begin{array}{c}
y^{2} z+a_{1} x y z+a_{3} y z^{2} \\
=x^{3}+a_{2} x^{2} z \\
+a_{4} x z^{2}+a_{6} z^{3}
\end{array}\right.
\end{array}\right\}
$$

for complex numbers $a_{1}, a_{3}, a_{2}, a_{4}, a_{6}$.

Examples of elliptic curves

Belyı̆ Map A Bely̆̆ Map is a rational function $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ with at most 3 critical values, which we assume to be $\{0,1, \infty\}$. Here $\mathbb{P}^{1}(\mathbb{C})$ is the Complex Projective Line.
Some examples include:
$\beta(x, y)=\frac{y+1}{2}$
for $E: y^{2}=x^{3}+1$
$\beta(x, y)=\frac{\left(y-x^{2}-17 x\right)^{3}}{2^{14} y}$ for $E: y^{2}+15 x y+128 y=x^{3}$ $\beta(x, y)=\frac{(x-5) y+16}{32}$ for $E: y^{2}=x^{3}+5 x+10$

Dessins d'Enfant A bipartite graph is a graph whose vertices will be composed of 2 disjoint sets, in this case represented by 2 different colors: Black and Red. Given a Belyı̆ map, its corresponding dessin d'enfant is a bipartite graph of red and black vertices given by
$*-\beta^{-1}(0)=$ Red Vertices
$\beta^{-1}(1)=$ Black Vertices
$\beta^{-1}(1)=$ Black Verti
$\beta^{-1}([0,1)=$ Edges.

Objectives
Given an Elliptic Curve $E(\mathbb{C})$ and a Belyı̆ map $\beta: E(\mathbb{C}) \rightarrow$ $\mathbb{P}^{1}(\mathbb{C})$, we want to compute the image
$\beta^{-1}([0,1]) \subseteq E(\mathbb{C}) \simeq \mathbb{C} / \mathbb{Z}\left[\omega_{1}, \omega_{2}\right] \simeq T^{2}(\mathbb{R})$.
Simply put,
Input: A Belyĭ map β and its corresponding Elliptic curve. Output: The dessin d'enfant plotted in 2 and in 3 dimensions on the torus

Cremona and Thongjunthug Variation
This algorithm computes the elliptic logarithm using ArithmeticGeometric Means (AGM)
Step 2a: Calculate the roots
The roots e_{1}, e_{2}, and e_{3} of E can be calculated from
$4\left(x^{3}+a_{2} x^{2}+a_{4} x+a 6\right)+\left(a_{1} x+a_{3}\right)^{2}$
$=4\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)$.
Step 2b: Calculate the periods Using these roots, for a chosen integer N, iterate for $p \in(0, N)$

$$
\begin{array}{ll}
A_{0}=\sqrt{e_{1}-e_{3}} & A_{p+1}=\frac{A_{p}+B_{p}}{2} \\
B_{0}=\sqrt{e_{1}-e_{2}} & B_{p+1}=\sqrt{A_{p} B_{p}} \\
C_{0}=\sqrt{e_{2}-e_{3}} & C_{p+1}=\frac{C_{p}+D_{p}}{2} \\
D_{0}=\sqrt{e_{2}-e_{1}} & D_{p+1}=\sqrt{C_{p} D_{p}}
\end{array}
$$

A_{N} converges to the $\operatorname{AGM}\left(A_{0}, B_{0}\right)$ and C_{N} converges to the $\operatorname{AGM}\left(C_{0}, D_{0}\right)$. The periods are calculated from these numbers A_{N} and C_{N} as $\omega_{1}=\pi / A_{N}$ and $\omega_{2}=\pi / C_{N}$.
Step 2c: Calculate the elliptic logarithm Given a point $P=(x, y)$ from the list of points in step 1 of the original algorithm, iterate $p \in(1, N)$ calculate the following values

$$
\begin{array}{ll}
I_{1}=\sqrt{\frac{x-e_{1}}{x-e_{2}}} & I_{p+1}=\sqrt{\frac{A_{p}\left(I_{p}+1\right)}{B_{p-1} I_{p}+A_{p-1}}} \\
J_{1}=\frac{-\left(2 y+a_{1} x+a_{3}\right)}{2 I_{1}\left(x-e_{2}\right)} & J_{p+1}=I_{p+1} J_{p}
\end{array}
$$

Then the elliptic logarithm can be calculated as

$$
z=\log _{E}(P)=\frac{1}{A_{N}} \arctan \frac{A_{N}}{J_{N}}
$$

Future Projects

These examples are all plotted on surfaces of genus 1 , we now ook to see the plots of dessins d'enfants on genus $g>1$, or g-holed torii.

References

[1] Antoine D. Coste, Gareth A. Jones, Manfred Streit, and Jürgen Wolfart, "Generalised Fermat Hypermaps and Galois Orbits". Glasgow Math Journal, Vol. 51 (2): 289-99. 2009 [2] John E. Cremona and Thotsaphon Thongjunthug, "The complex AGM, periods of elliptic curves over \mathbb{C} and complex elliptic logarithms". arXiv.org, November 2010.
3] Noam Elkies, "Elliptic Curves in Nature"
http://www.math.harvard.edu/~elkies/nature.html 4] Lily S. Khadjavi and Victor Scharaschkin, "Belyĭ Maps and Elliptic Curves". Preprint
http://myweb.lmu.edu/lkhadjavi/BelyiElliptic.pdf 5] Leonardo Zapponi, "On the Belyĭ Degree(s) of a Curve Defined Over a Number Field." arXiv.org, April 6, 2009

Acknowledgements

- Dr. Edray Herber Goins, Hongshan Li, and Avi Steiner

Dr. Lazlo Lempert

- Dr. Uli Walther

Dr. Gregery Buzzard / Department of Mathematics - College of Science

- National Science Foundation

Results

$E: y^{2}=x^{3}+5 x+10$
$\beta(x, y)=\frac{(x-5) y+16}{32}$

$E: y^{2}=x^{3}-120 x+740$
$\beta(x, y)=\frac{(x+5) y+162}{324}$

