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Motivation

With given Bely̆ı maps and their corresponding elliptic
curves, we can give a general description of their dessins
d’enfants in 2 dimensions. We don’t know, however, what
these dessins will look like when embedded on the torus, in 3
dimensions. Our goal is to create a program that will allow
us to visualize these dessins on the torus.

Background

•Elliptic Curves An elliptic curve E is a set

E(C) =
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for complex numbers a1, a3, a2, a4, a6.

Examples of elliptic curves

•Bely̆ı Map A Bely̆ı Map is a rational function
β : E(C)→ P1(C) with at most 3 critical values, which we
assume to be {0, 1,∞}. Here P1(C) is the Complex
Projective Line.

Some examples include:

β(x, y) = y + 1
2

for E : y2 = x3 + 1

β(x, y) = (y − x2 − 17x)3

214y
for E : y2 + 15xy + 128y = x3

β(x, y) = (x− 5)y + 16
32

for E : y2 = x3 + 5x + 10

•Dessins d’Enfant A bipartite graph is a graph whose
vertices will be composed of 2 disjoint sets, in this case
represented by 2 different colors: Black and Red. Given a
Bely̆ı map, its corresponding dessin d’enfant is a bipartite
graph of red and black vertices given by:
• β−1(0) = Red Vertices
• β−1(1) = Black Vertices
• β−1([0, 1]) = Edges.

Objectives

Given an Elliptic Curve E(C) and a Bely̆ı map β : E(C)→
P1(C), we want to compute the image

β−1([0, 1]) ⊆ E(C) ' C/Z[ω1, ω2] ' T 2(R).
Simply put,

Input: A Bely̆ı map β and its corresponding Elliptic curve.

Output: The dessin d’enfant plotted in 2 and in 3 dimen-
sions on the torus

Algorithm

We are initially given an elliptic curve E and a Bely̆ı map β.
Step 1: Given a “large” integer N , compute(x, y) ∈ A2(C)

∣∣∣∣∣∣∣
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6

β(x, y) = k

N
for k = 0, 1, 2 . . . , N


This will result in a list of points on the elliptic curve approximat-
ing β−1([0, 1]) that we will use to calculate the dessin d’enfant.
Step 2: Compute the Map

E(C) ∼−→ C/Z[ω1, ω2]
The result will be the estimated elliptic logarithm.

Step 3: For each point P = (x0, y0) from the list of points
obtained in step 1, and z = logE(P ) from step 2, compute
1 real numbers m and n where z = mω1 + nω2 such that

0 ≤ m < 1 and 0 ≤ n < 1.
2 numbers (u, v, w) where

u = (R + r cos(2πm)) cos(2πn)
v = (R + r cos(2πm)) sin(2πn)
w = r sin(2πm)

Step 4: Plot the points (m,n) onto A2(R) and the points
(u, v, w) onto A3(R).
Computational packages such as Sage and Mathematica had
trouble computing the integral necessary to calculate the elliptic
logarithm. An alternate method that could bypass the integral
was needed to calculate the elliptic logarithm. Such a variation
is offered in a paper by Cremona and Thongjunthug [2].

Cremona and Thongjunthug Variation

This algorithm computes the elliptic logarithm using Arithmetic-
Geometric Means (AGM).
Step 2a: Calculate the roots
The roots e1, e2, and e3 of E can be calculated from

4(x3 + a2x
2 + a4x + a6) + (a1x + a3)2

= 4(x− e1)(x− e2)(x− e3).
Step 2b: Calculate the periods Using these roots, for a
chosen integer N , iterate for p ∈ (0, N)

A0 =
√
e1 − e3 Ap+1 = Ap +Bp

2
B0 =

√
e1 − e2 Bp+1 =

√
ApBp

C0 =
√
e2 − e3 Cp+1 = Cp +Dp

2
D0 =

√
e2 − e1 Dp+1 =

√
CpDp

AN converges to the AGM(A0,B0) and CN converges to the
AGM(C0,D0). The periods are calculated from these numbers
AN and CN as ω1 = π/AN and ω2 = π/CN .
Step 2c: Calculate the elliptic logarithm Given a point
P = (x, y) from the list of points in step 1 of the original algo-
rithm, iterate p ∈ (1, N) calculate the following values

I1 =
√
x− e1

x− e2
Ip+1 =

√√√√ Ap(Ip + 1)
Bp−1Ip + Ap−1

J1 = −(2y + a1x + a3)
2I1(x− e2)

Jp+1 = Ip+1Jp

Then the elliptic logarithm can be calculated as

z = logE(P ) = 1
AN

arctanAN

JN

Future Projects

These examples are all plotted on surfaces of genus 1, we now
look to see the plots of dessins d’enfants on genus g>1, or g-holed
torii.
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Results

E : y2 = x3 + 1 β(x, y) = y + 1
2 E : y2 = x3 + x2 + 16x + 180 β(x, y) = x2 + 4y + 56

108
E : y2 = x3 + 5x + 10 β(x, y) = (x− 5)y + 16

32

E : y2 = x3 − 432 β(x, y) = 216x3

(y + 36)3 E : y2 = x3 − x β(x, y) = (x2 + 2x− 1)4

16 y2(x2 + 1)2 E : y2 = x3 − 120x + 740 β(x, y) = (x + 5)y + 162
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